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Abstract

Investments into wind generation may be hampered by revenues uncertainty

caused by the natural variability of the resource, the impact of climate change

on wind potential and electricity prices, and the regulatory risks. We quantify

the uncertainty of the net present value of wind farms in France, Germany and

Denmark and we evaluate the cost of support mechanisms needed to guarantee

their profitability under present and future climate. We build a localised model

for wind power output and a country-level model for electricity demand and

prices taking into account hourly variation of wind, load and prices. Our

study reveals that support mechanisms are needed at current market prices and

current climate, as well as under future climate according to several scenarios

for climate change and energy transition. The cost of support mechanisms

for a 15-year period is evaluated to 57–172 billion euros in France, 232–397 in

Germany, and 18–50 in Denmark.

Keywords : wind energy, climate variability, climate change, net present value

1 Introduction

To limit greenhouse gas emissions from power generation, the use of renewable in-

termittent energy sources, such as wind and solar, has been encouraged in many

European countries. Renewable energy generation, together with the electrification

of carbon-intensive sectors such as transport and heating, are the pillars of energy

transition. In this context, wind energy plays a particularly important role because

of high wind potential in Europe, rapidly decreasing costs of technology, regulated
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support mechanisms and good acceptance by the public. In 2018, the European

wind sector has attracted investments for 65 billion e and this figure is expected

to increase in the short term due to favourable economic conditions [34]. However,

this is still not enough to achieve the energy transition objectives. The investment

into wind energy production is hampered by the uncertainty of future revenues of

wind power producers. This uncertainty arises from the natural variability of the

resource, from the climate change which is likely to impact not only future wind en-

ergy production but also electricity prices and, last but not least, from the evolution

of regulatory policies. A more precise understanding of the uncertainties at stake is

therefore needed for a number of reasons. First, it will give the private sector in-

vestors a better view of risks and opportunities associated with wind energy industry.

Second, it will enable the public authorities to quantify the level of support needed

for long-term sustainability of the industry and to evaluate the long term costs of

energy transition. Finally, it will allow the financial industry to develop suitable

funding instruments.

The potential for future cost reduction in wind energy production is analysed in

several recent articles. In [35], the authors summarise the results of a global expert

survey of wind energy costs; they anticipate a 24–30% cost reduction by 2030 and a

35–41% reduction by 2050. The articles [2, 32] study the evolution of levelized cost

of wind generated electricity, both anticipating cost reductions for this generation

technology. In [6] four main drivers for past cost changes are identified: learning

by-deployment, learning by-researching, supply chain dynamics and market dynam-
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ics, including support policies. Concerning the value of wind power plants, several

studies agree that it tends to decline as penetration rate increases [22, 12, 20]. A full

model for the economic value of wind at increasing penetration taking into account

hourly variation of wind and load is presented in [23]. An interesting model recently

proposed in [16] analyzes the effects of strategic behavior of wind producers and het-

erogeneous resource availability. Concerning support policies, real-options models

with stochastic dynamics are developed in [18, 17] to compare the costs of different

policy schemes. Scenarios for future worldwide wind power deployment, associated

costs and policy options are reviewed in [31], while the papers [7, 28] discuss the

risks and risk management options of renewable energy projects, in particular rev-

enue variability risks associated to resource intermittency and price volatility, that

we also address in this paper.

Concerning the impact of climate change on wind speed, the article [27] studies

its consequences on the optimal power generation and transmission expansion plan

in Chile. Some articles use reanalysis data to quantify wind potential and to assess

its uncertainty, see e.g. [26]. The impact of climate change on wind potential and

levelized cost of wind energy is analyzed in [10, 3] using CMIP5 scenarios. However,

these papers, which use climate data to evaluate the wind potential, to not combine

it with the price and electricity demand component. This is all the more important

because the impact of climate change on electricity demand, due in particular to

the global temperature change, is expected to be stronger than the impact on the

wind potential [25]. The economics of wind energy is studied only in terms of costs

but not in terms of actual revenues for the wind producers operating in the market,
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and consequently, the cost of public support measures needed to make wind energy

profitable is rarely evaluated.

We propose to fill this gap, by quantifying the uncertainty of the net present

value of standardized wind farms in European countries and by evaluating the level

and the total cost of support mechanisms needed to guarantee the profitability of

the wind fleet. To this end, we build a localized model for wind power output and

a country-level model for electricity demand and prices taking into account hourly

variation of wind, load and prices, using reanalysis data, climate projections and

Integrated Assessment Model (IAM) scenarios. Our methodology is general, but for

specific evaluations we focus on the examples of France, Germany and Denmark.

Our study reveals that support mechanisms in these countries are needed for wind

energy to be profitable under current market prices and current climate. Under fu-

ture climate, using several scenarios for climate change and energy transition, we

also show that the evolution of both price and wind production does not allow the

wind energy industry in these countries to develop in a free market environment and

that support mechanisms will still be needed.

Our methodology relies on constructing a very long time series of synthetic local

wind power production and national electricity prices. This is done by plugging a

very long time series of climate variables into a model for wind power production

and for electricity prices, calibrated on recent market and energy system data. The

time series of climate variables are obtained either from historical reanalysis data
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(for current climate analysis) or from regional climate model projections (for future

climate analysis). The synthetic local wind power production and national electricity

prices are then used to simulate the revenues of standardized wind farms depending

on their location, under different scenarios. This approach allows to disentangle the

different sources of variability and to quantify the variations in the revenues and

expenditure of wind farms at current market design and network structure, under

different support schemes.

The first objective of our paper is to evaluate the net present value of standard-

ized wind farms and quantify the associated uncertainty. In this part, we model the

wind farm revenues using historical wind and temperature data spanning the 20th

century. Our results show that the extreme variations of net present value along the

20th century are of the order of one year of revenues whatever the support mechanism

used. We show that under recent climate and current market prices, profitability of

wind farms is not guaranteed without support schemes. Using feed-in tariff (FiT) and

feed-in premium (FiP) mechanisms with current level of support allows to guarantee

profitability of wind farms in a large part of the domain. We also show that when

projecting the future value of a wind farm based on historical production records, an

investor can both overestimate or underestimate the profitability due to the natural

variability of wind speed and to the presence of long-term trends.

Our second objective is to quantify the support level that will be needed in future

to guarantee the profitability of the wind fleet, and to evaluate the cost of such sup-
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port mechanisms. To address this objective, we simulate future price scenarios using

electricity demand and renewable penetration projections from integrated assessment

models. These scenarios are combined with wind speed and temperature projections

from the regional climate model intercomparison project (CORDEX), corresponding

to several Representative Concentration Pathways (RCP). This enables us to model

future local wind energy production and prices in a changing climate. Our approach

allows to assess and quantify all relevant sources of uncertainty [13]: socio-economic

uncertainties corresponding to the choices made by the society (e.g the extent of

climate change mitigation vs. adaptation), scientific uncertainties (corresponding to

model simulations spread and associated with modelling errors), and natural/climate

uncertainties (related to the natural variability of the earth system, including climate

change).

Under future climate, we show that profitability of wind farms is reached in sev-

eral regions of the domain only in the specific scenario of high electrification and low

penetration of wind energy. Thus to guarantee profitability of 90% of the wind farms

in the future, under the assumption that future wind fleet is installed following cur-

rent spatial distribution, the required premium level in France for onshore (offshore)

wind farms varies from 33 e/MWh (45 e/MWh) in the best case scenario to 66

e/MWh (78 e/MWh) in the worst case scenario. In Germany, the premium level

for onshore (offshore) wind farms varies from 68 e/MWh (76 e/MWh) in the best

case scenario to 93 e/MWh (102 e/MWh) in the worst case scenario. In Denmark,

the premium level for onshore (onshore) wind farms varies from 1.5 e/MWh (83
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e/MWh) in the best case scenario to 23 e/MWh (105 e/MWh) in the worst case

scenario. According to these results, we find that supporting the penetration of wind

energy in these countries during 15 years amounts to costs for the regulator ranging

from 57 to 172 billion e in France, from 232 to 397 billion e in Germany, and from

18 to 50 billion e in Denmark, depending on the scenario considered and the level

of penetration of wind energy.

These numbers do not take into account the potential reduction of costs of wind

energy; they should not be interpreted as global investment needs, but rather as costs

of public support measures required to attract the necessary investments from the

private sector. In comparison, the global required low carbon investments (all energy

types combined) to achieve the 2◦C scenario are estimated to about 260 billion e

per year [21]. However high these numbers may seem, they should be compared

with potentially even higher costs of mitigating the adverse consequences of climate

change accelerated by the use of fossil fuels.

The rest of the paper is structured as follows. In section 2 we briefly describe

the model that we use to generate long time series of synthetic electricity prices

and wind energy output under present and future climate. In section 3 we analyse

the variability of wind farm revenues and value under present climate. Section 4

presents the analysis of wind farm value under future climate and various socio-

economic scenarios; it evaluates the cost of public support schemes required to ensure

the economic sustainability of wind energy in the future. Section 5 draws some
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conclusions.

2 Modelling electricity prices and local wind pro-

duction

Our analysis is based on a long time series of synthetic wind energy production and

electricity prices under present and future climate. Here, we briefly describe the

modelling approach to generate the time series. A summary of the variables and

the data sources is provided in the section Data in the Appendix A and a detailed

description of the modelling approach is presented in the section Models of the same

appendix. Figure 1 presents the modelling process for wind energy infeed at each

gridpoint of the considered domain (Fig 1-(a)) and for day-ahead prices in each of

the three considered countries (Fig 1-(b)). Both models have three steps, going from

the bottom to the top of Figure 1 .

In the first step, which is common to the two models, we reduce the bias of the

long time series of surface wind speed and temperature from the ERA20C reanaly-

sis by comparing them to the ERA-5 reanalysis dataset1 which is considered to be

more reliable and less biased, and performing a quantile-quantile correction. For the

local production model, in the second modelling step, we downscale the wind speed

time series to hourly frequency by generating the missing values from a stochastic

wind model. In the third step, we combine the local wind speed with standardized
1Reanalysis is a procedure wherein a single model for the atmosphere is run over an extended

historical period, coupled with an assimilation system, which assimilates all available observations
for this period. This results in a long homogeneous time series of the evolution of the atmosphere
which represents our best guess of the state of the atmosphere given the available data.
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production functions to obtain a time series of the synthetic local wind power pro-

duction. For the price model, the second step consists in generating long time series

of national production and demand, using models whose parameters are estimated

from historical data from a recent period. The third step allows to obtain a time

series of synthetic prices from the generated production and demand values.

(a) (b)

Figure 1: Model Schemes for (a) local production and (b) for country prices

As a result of these modelling processes, we obtain two datasets:

• The present climate dataset used to study the variability of wind farm revenues

and value at current climate, i.e., at 20th century climate variability but with

current market and energy system characteristics;

• The future climate dataset used to study the variability of the wind farm rev-

enues and value under future climate and future realistic scenarios for demand
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and wind energy penetration, taking into account the climate model uncer-

tainty.

We now proceed to describe the two datasets in detail. The present climate

dataset contains synthetic local wind power production data at the spatial resolution

of 1.125◦ and synthetic day-ahead prices, electricity demand and national wind energy

production in France, Germany and Denmark. All series have hourly time resolution

and correspond to the climate data from 1900 to 2010.

This dataset is illustrated in Figures 2, 3 and 4. Figure 2 displays the relative

standard deviation (i.e. the ratio between the standard deviation and the mean,

henceforth RSD) of onshore and offshore production capacity factor in panel (a),

and of price in panel (b) for each considered country. It is clear that the variability

of revenues is largely explained by that of the capacity factor, which is much more

variable than the price in all countries under consideration. The standard deviation

of the price is around 35% of the mean price, while the standard deviation of the

capacity factor exceeds the mean capacity factor in most onshore regions especially

in locations where the mean capacity factor is low (e.g mountainous regions). In

France, the price RSD exceeds 45% because the seasonal cycle is more pronounced

than in the other countries due to strong seasonal variations of the consumption.
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Figure 2: Relative standard deviation (RSD) of the capacity factor (a) and prices
(b)

Figure 3 shows the correlation between synthetic prices and production at differ-

ent timescales.

Figure 3: Pearson correlation between prices and production: (c) hourly mean, (d)
monthly mean, (e) yearly mean

At the hourly timescale (panel (c)), the correlation between prices and produc-

tion is low but positive (<0.2). At the monthly timescale (panel (d)), wind energy

production is highly positively correlated with prices in all three countries under
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study. This is due to matching seasonal cycles of wind energy production and prices.

Indeed, prices are high during cold seasons when demand increases. At the same

time, wind production in Western Europe is also expected to be high during the cold

season due to the enhanced activity of the storm track. In the long term (panel (e)),

the correlation between wind energy production and prices becomes negative, espe-

cially in Denmark and the north of Germany. This may be related to the merit-order

effect: a rise in wind production at the national level tends to push the wholesale

electricity price down (see [4, 5] for instance). It may also indicate a negative corre-

lation between temperature (whose increase tends to push the demand and thus the

prices down) and wind energy production.2

Figure 4 displays the long-term trends (10 years sliding mean) of the synthetic

electricity prices, electricity consumption and wind energy production in France,

Germany and Denmark (Fig 4-(a,b,c), respectively). As expected from our model,

where the electricity prices are largely driven by consumption, these two time series

tend to vary together. On the other hand, the negative correlations between elec-

tricity prices and wind energy production, discussed above, are not clearly visible on

this graph due to averaging. We observe long term trends in consumption and price

trajectories especially after the late 60s when they both decrease, and very long-term

trends in wind energy production, which increases in all three countries throughout
2This correlation can also be related to the large scale weather regimes such as the North Atlantic

Oscillation (NAO) which, in the positive phase, enhances the storm track activity, increasing the
wind production inWestern Europe, and at the same time, contributes to increasing the temperature
and therefore decreasing energy demand and prices, by bringing warmer wet air in this region. In
the negative phase, this phenomenon is reversed. The NAO displays long term cycles of the order
of 3 to 7 years. Many studies have demonstrated a correlation of the NAO (and other weather
regimes) with wind speed and production, and electricity demand (see for instance [1, 9]).
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the 20th century and appears to decrease afterwards.3

Figure 4: 10-year moving average of electricity prices (green lines), national electricity
consumption (red lines) and national wind energy production (blue lines) in (a)
France, (b) Germany, (c) Denmark.

3The authors of [36] identify such positive trends for wind speed in ERA20C, CERA20C reanal-
yses as well as in the OFA observation dataset (assimilated in these reanalyses). They also identify
negative trends in NOAA20CR reanalysis, and no trends in the free simulation ERA20CM which
uses the same model as ERA20C. The study focuses on North-Pacific and North Atlantic areas, but
smaller and significant trends are found in continental Europe as well. They show that the positive
trends in ERA20C may come from the assimilation of marine wind speed. The discussion of the
reality of these trends is very instructive but does not conclude as to whether these trends are spu-
rious or not. Arguments in favour of spurious trends are based on the changes in wind measurement
techniques, the disagreement between mean sea level pressure (MSLP) over the Arctic in ERA20C
and measurements (HadSLP2), and the low signal on wind speed in CMIP5/CORDEX simulations.
Nevertheless, there are also some arguments in favour of real trends such as the findings of trends
in wave height in agreement with positive wind speed trends. We make the choice to keep the wind
speed as it is in ERA20C. This choice can be justified by the purpose of a reanalysis which aims
at representing the observations in the best possible way and by the fact that there is no proper
correction methodology. In the following, we address this issue by giving in some cases an order of
magnitude of the impact of this trend on our results.
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The future climate dataset contains synthetic local wind production data at the

spatial resolution of 0.44◦ and synthetic day-ahead prices, demand and national wind

energy production in France, Germany and Denmark. All series have hourly time

resolution and correspond to projected climate from 2006 to 2050, under the RCP-4.5

and the RCP-8.5 scenarios, for 5 different regional climate models. Price, demand

and national wind energy production series are computed under 3 scenarios of future

electricity demand (no electrification, medium electrification and high electrification

of demand) and 2 scenarios of wind energy penetration (low and high penetration of

wind energy), which makes a total of 6 economic scenarios.

The three demand scenarios are based on the IMAGE 3.0 model scenarios [29]4.

In each scenario, the actual electricity demand projections are defined starting from

the historical demand of each country, adding the temperature-dependent demand

computed with the given climate projection and adding a common rate of growth

defined for Europe as follows:

• In the first scenario, the electricity demand is only temperature dependent,

there is no additional trend. As a result of temperature increase in the RCPs

scenarios, the electricity demand tends to decrease in this scenario;

• The second scenario projects a medium electrification; the trends of electricity

demand are based on the IMAGE 3.0 scenario LIMITS-Pledges, where the

electricity demand increases almost linearly by 28% from 2020 to 2050;

• The third scenario projects a high electrification; the trends of electricity de-
4The IMAGE 3.0 model output can be found at https://tntcat.iiasa.ac.at/

LIMITSPUBLICDB/dsd?Action=htmlpage&page=series
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mand are based on the IMAGE 3.0 scenario LIMITS-baseline, where the elec-

tricity demand increases almost linearly by 42% from 2020 to 2050.

The two wind energy penetration scenarios are designed based on trends given

in the report [33], which are different for each considered country. The first scenario

projects a low increase of installed wind capacity and the second scenario projects

a high increase of installed capacity. The six resulting scenarios are summarised in

Table 1.

Wind penetration in 2030

Scenarios

Low scenario
(onshore, offshore in GW)

In France : 31.0, 4.3
In Germany : 60.0, 14.0
In Denmark : 3.6, 3.4

High scenario
(onshore, offshore in GW)

In France : 41.0, 11.1
In Germany : 71.0, 20.0
In Denmark : 6.5, 6.1

Demand
increase

from 2020 to 2050

0% Scenario 1 Scenario 2
28% Scenario 3 Scenario 4
42% Scenario 5 Scenario 6

Table 1: Wind energy penetration and electricity demand scenarios used to build
price scenarios in each country

The electricity price projections are computed using these scenarios for electricity

demand and wind energy production in each country and using the temperature and

wind speed from the two RCPs as inputs. We thus have 60 different price projections

for each country (2 RCPs, 5 models, 3 demand scenarios and 2 penetration scenarios).

In the following, for each of the 6 economic scenarios (3 demand times 2 penetration),

we have 10 different physical simulations corresponding to different models and RCP.

Note that the two RCPs are considered as two simulations, not as scenarios, because

the results from the two RCPs are not significantly different. This is not unexpected
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as RCP scenarios begin to show diverging trajectories around 2050 in terms of global

mean temperature for instance. Projecting prices with our models after 2050 also

shows diverging trajectories at this period (not shown).

The change in future wind speed and future wind production has already been

investigated in several studies. Tobin et al. (2016) using the same CORDEX dataset

(with 12 models) found a decrease of the wind speed by the end of the century of less

than 2% and a decrease of the wind power generation potential in Western Europe

of about 5 to 10%. We obtain similar results with our dataset (not shown).

Figure 5 displays the projected yearly average prices in blue for France, in black

for Germany and in red for Denmark, in the 6 economic scenarios previously de-

scribed. The shaded area corresponds to the minimum and maximum yearly average

prices among the 10 simulations (5 models and 2 RCPs). Left panels correspond to

low penetration scenarios and right panels to high penetration scenarios. Top panels

correspond to no demand trend scenarios, middle panels to medium demand trend

scenarios, and bottom panels to high demand trend scenarios.
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Figure 5: Yearly average price projections for each of the 6 different economic scenar-
ios (blue for France, black for Germany, red for Denmark). Left panels correspond
to low penetration scenarios (a,c,e) and right panels to high penetration scenarios
(b,d,f). Top panels correspond to no demand trend scenarios (a,b), middle panels
to medium demand trend scenarios (c,d), and bottom panels to high demand trend
scenarios (e,f).

Some discontinuities are visible in 2020 (Fig 5-(c), (d), (e) and (f)). They cor-

respond to the beginning of demand electrification and wind energy penetration

scenarios. Price trajectories span a wide range of possible prices (from less than

about 20e/MWh in 2050 in Denmark (Fig 5-(b)) to 70e/MWh in 2050 in France

(Fig 5-(e)).

The 10 simulations (5 models and 2 RCPs - filled area) display uncertainties of

about 2e/MWh to 5e/MWh. The trajectories of the scenarios are firstly driven

by electricity consumption assumptions (comparing panels from top to bottom),
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secondly by wind energy penetration assumptions (comparing left and right panels)

and thirdly by the RCP (not shown). In the scenario where the demand only depends

on temperature, the prices drop slowly between 2010 and 2050 (Fig 5-(a,b)). For a

medium and high electrification of the system, the electricity demand increases after

2020, and proportionally so do the prices (Fig. 5-(c,d,e,f)).

Figure 6 shows the projected intra-annual RSD of prices for each scenario. The

scenario of low demand and high penetration displays high values of RSD in all

countries (Fig 6-(b)). The increasing standard deviation relatively to the average

price is due to decreasing average prices but also to increasing standard deviation

due to the intermittency of wind energy production. Overall, there is an increase

of the price RSD in every scenario due to wind energy penetration. The increase in

RSD takes place between 2020 and 2030 when the installed wind capacity increases.

In France, there is a decrease of the RSD after 2030 in the scenarios of medium

and high electrification of demand and high penetration of wind energy (Fig 6-(d)

and (f)), and a decrease of RSD after 2020 in the scenario of high electrification

of demand and low penetration (Fig 6-(e)). We conclude that the penetration of

renewable energy has less influence on prices variability in France than in Denmark

and Germany.
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Figure 6: Same as Figure 5 but for relative standard deviation

3 Variability and uncertainty of wind farm value un-

der present energy economics and recent climate

From our dataset of 111 years, we define 81 virtual wind farm projects at each

gridpoint starting on the 1st of January of each year from 1900 to 1981 and lasting

30 years. Figure 7 displays the NPV averaged over 81 project at each gridpoint as

well as the corresponding V aR95 (quantile at the 95% level).
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Figure 7: Mean (left) and difference between mean and Value at risk 95th of NPV
(right), over the 81 wind farm projects and after 30 years of lifetime for wind farms
operating without a subsidy (a,b), with FiT subsidy (c,d), and with FiP subsidy
(e,f). The red contour line on left panels displays the line of NPV=0.

For offshore wind farms operating without subsidies (Fig 7-(a,b)), the NPV is

negative due to the high initial investment and costs. Thus, offshore wind farms
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are not yet profitable if not supported by regulations mechanisms. Nevertheless,

both investment costs and operational costs are rapidly decreasing ([14, 28, 32]). For

onshore wind farms, small areas in the west of France display small positive NPV

of the order of the range between the mean and the 95th percentile of NPV. The

difference between the mean and the V aR95 is small, meaning that the NPV does

not vary much on the long term. The standard deviation is less than 5% the mean

of the NPV in most of the regions.

Note that removing the trends in the ERA20C wind speed to compute local pro-

duction has a large impact on the inter-quartile range (IQR) for the 81 projects:

using detrended production results in an IQR which is 30% to 100% lower than the

IQR computed using production with trends. In other words, the very long term

trends in wind speed result in low profitability early in the century and higher prof-

itability at the end of it. Detrending wind speed results in a less varying profitability

along the 20th century. The decrease in IQR is larger for offshore wind farms and

for onshore wind farms close to coast.

We model both the feed-in-tariff (henceforth FiT) and the feed-in-premium (hence-

forth FiP) subsidy. Under FiT, the producer receives a fixed guaranteed price

of 82e/MWh for 10 years after which the price decreases linearly for 5 years to

28e/MWh. After 15 years the subsidy disappears and the remaining energy is sold

in the day-ahead market. This corresponds to the support mechanism used in France

until 2016. The function ft, which defines the amount a producer receives for a MWh

produced, is given by:
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fFiTt = 82e/MWh10≤t<10 +

(
82− 54× t− 10

5

)
e/MWh110≤t<15 + Pt1t>15. (1)

Several FiP procedures exist. We choose to use a simplified one under which

the producer receives a guaranteed bonus of 33e/MWh in addition to the market

price. After 15 years the subsidy disappears and the remaining energy is sold in the

day-ahead market. The function ft is in this case given by:

fFiPt = (Pt + 33e/MWh)10≤t<15 + Pt1t>15. (2)

The formula for the bonus is inspired from the Danish FIP. In reality, the proce-

dure is slightly different, as the bonus is guaranteed until the sum of the the price

and the bonus is under 78e/MWh. In this last case, the producer receives a bonus

to reach the target of 78e/MWh. Germany used a FiT mechanism similar to the

French one until 2012 and now uses a FiP similar to the Danish one. We use the

same mechanisms for onshore and offshore wind farms.

For wind farms supported by either FiT (Fig 7-(c,d)) or FiP (Fig 7-(e,f)) mech-

anisms, the wind farm value is higher, especially in the case of the FiT mechanism.

Offshore wind farms are found to be profitable with FiT in the Western coast of

France, Denmark and Germany. The average NPV over the 81 projects for the FIT

mechanism reaches 2.5Me/MW for a wind farm with a lifetime of 30 years (Fig 7-

(c)). For FiP mechanism, the average NPV reaches 2.3Me/MW (Fig 7-(e)). The

difference between the mean and the V aR95 is still small and represents not more
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than 10% of the mean NPV, showing that the revenues are rather stable in this case.

A sensitivity analysis of NPV with respect to the discount rate is reported in the the

Appendix (section Methods).

It is common for a wind farm project to base the projections for the future value

of an asset on the historical wind speed recorded at the chosen location. To highlight

the shortcomings of this approach, we define 51 wind farm projects at each gridpoint

starting on the first of January of each year from 1930 to 1981 and lasting 30 years5.

We use three different strategies for estimating the wind farm value: the first one

based on the wind speed recorded during 5 most recent years, the second one based

on 10 most recent years, and the third one based on 30 most recent years before

the project begins. Figure 8 displays the mean bias and standard deviation of the

bias between projected NPV and actual NPV. We compare projections based on a

historical period of 5-years (Fig 8-(a,d)), 10-years (Fig 8-(b,e)), and 30-years (Fig 8-

(c,f)).

Our results show that every method underestimates the average NPV. Using the

past 30-years to project future revenues results in a larger mean error (underestima-

tion) than using 5 or 10 past years (Fig 8-(a) compared to (b) and (c)). Nevertheless,

the standard deviation is much lower using this method (Fig 8-(f) than using the 5

or 10 past years of data (Fig 8-(d,e)). Thus, using 5 or 10 past years results in higher

risk to make large errors than when the projection is based on a longer period (e.g. 30

years). Using 30 years of data makes the projection more sensitive to very long term
5The choice of 51 projects is due to the fact that we have 111 years of data and would like to

have 30 years of observations before the start of the project in order to test different projection
strategies.
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Figure 8: Mean (a,b,c) and standard deviation (d,e,f) of the bias calculated between
the NPV at the end of a project and the projected NPV based on (a,d) the past 5
years (b,e) the past 10 years (c,f) the past 30 years

trends, resulting in a larger mean error, while using fewer historical years makes the

projection more sensitive to shorter term interannual variability of revenues. Such

projections can sometimes largely overestimate or underestimate the actual future

production, revenues and wind farm value. For instance, if an investor projects fu-

ture revenues based on the past 5 years when the NAO is in positive phase, he may

highly overestimate future production concluding wrongly on the profitability of the

project.

Note that this result is very sensitive to long term trends found in ERA-20C wind
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speed. Indeed, the fact that the mean error is larger for a 30 years based projection

than a 5 years based projection is entirely due to these trends. When trends are

removed from the data, using the past 30-years to project future revenues results in

a lower mean bias than when using 5 or 10 past years, so that this method becomes

the best in terms of both mean and standard deviation of the error.

4 Future value of wind farms under realistic socio-

economic scenarios and climate change

In this illustration we compute the NPV for virtual wind farms commissioned on

January 1st, 2021 with lifetime of 30 years (decommissioning date is December 31st,

2050). Figure 9 displays the NPV averaged over the 10 CORDEX simulations (5

models and 2 RCPs), for each of the 6 price scenarios, in the case of wind farms

operating without support mechanism. In the scenario of high electrification and low

penetration of wind energy (Figure 9-(d)), several areas of the domain are found to

be profitable for onshore wind farms. In the northwest of France and in the western

coast of Denmark, the NPV attains 1 Me/MW without support mechanisms. In

the remaining scenarios, positive NPV is very rare and in any case very low. As a

consequence, in most cases, support mechanisms are needed to guarantee profitability

of wind farms and thus ensure energy transition.
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Figure 9: Net present value, averaged over the 10 CORDEX simulations (5 models
and 2 RCPs), for the 6 prices scenarios. The red line shows the boundary between
regions with positive and negative NPV. Scenario 1: No demand trends and low
wind penetration (a), Scenario 2: No demand trends and high wind penetration
(b), Scenario 3: Medium demand trends and low wind penetration (c), Scenario 4:
Medium demand trends and high wind penetration (d), Scenario 5: High demand
trends and low wind penetration (e), Scenario 6: High demand trends and high wind
penetration (f).
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4.1 Level and cost of support mechanisms under future cli-

mate

Figure 10 maps the FiP level needed to guarantee a positive or null NPV for wind

farms installed in 2021 and operating for 30 years under each considered scenario.

The FiP is a simple premium added to the market price for the first 15 years of plant’s

operation: the FiP takes into account the evolution of the market price, contrary

to the FiT which is less dependent on prices (the dependence only appears at the

mechanisms’ expiration date, i.e. after 15 years).

Figure 10: Premium level ensuring wind farm profitability under the 6 considered
scenarios. Scenario 1: No demand trends and low wind penetration (a), Scenario
2: No demand trends and high wind penetration (b), Scenario 3: Medium demand
trends and low wind penetration (c), Scenario 4: Medium demand trends and high
wind penetration (d), Scenario 5: High demand trends and low wind penetration (e),
Scenario 6: High demand trends and high wind penetration (f).
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Using the current spatial distribution of the wind farms in the three countries

under study (Figure 11), we calculate for each country the premium level needed to

guarantee a positive NPV for the 90% of the fleet. We assume that the new installed

capacity will display the same spatial distribution as the current one. For offshore

wind farms in France, where there is no currently installed capacity, we make the

assumption that future wind farms will be mainly placed in the northern coast and

in the south, close to the shore (see Figure 11).

Figure 11: Wind farm location corresponding to current distribution of wind fleet in
France (blue points), Germany (black points) and Denmark (red points). Blue cross
markers indicate the location assumed for future offshore wind farms in France.

In France, the premium level for onshore (offshore) wind farms varies from 33e/MWh

(45e/MWh) in the best case scenario (Fig 10-(e)) to 66e/MWh (78e/MWh) in the

worst case scenario (Fig 10-(b)). In Germany, the premium level for onshore (off-
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shore) wind farms varies from 68e/MWh (76e/MWh) in the best case scenario (Fig

10-(e)) to 93e/MWh (102e/MWh) in the worst case scenario (Fig 10-(b)). Finally,

in Denmark, the bonus level for onshore (offshore) wind farms varies from 1.5e/MWh

(83e/MWh) in the best case scenario (Fig 10-(e)) to 23e/MWh (105e/MWh) in

the worst case scenario (Fig 10-(b)).

With these data, we are able to calculate the cost of wind energy penetration

(onshore and offshore) for each country and in each scenario. Remind that for sce-

narios 2, 4 and 6, penetration is high, i.e total (new) installed capacity in France

in 2030 is 41 GW onshore and 11.1 GW offshore; in Germany 71 GW onshore and

20 GW offshore; in Denmark 6.5 GW onshore and 6.1 GW offshore. In scenarios 1,

3 and 5, penetration is low, i.e total (new) installed capacity in France is 31 GW

onshore and 4.3 GW offshore; in Germany 60 GW onshore and 14 GW offshore; in

Denmark 3.6 GW onshore and 3.4 GW offshore. Note that we not only consider

the cost of new installed wind farms, but also that of the replacement of current

installed wind farms. Indeed, the vast majority of the currently installed wind farms

will arrive at decomissioning date within the next 30 years so that they will need to

be replaced to reach the penetration given by our scenarios. The costs are computed

by simply adding up the future payments, without discounting, and as a result, we

may slightly overestimate the true costs. However these are public support policy

costs which should therefore be discounted with the sovereign borrowing rate, and

the sovereign bond rates are presently very low6.
6At the time of writing, they are actually negative (seehttp://www.worldgovernmentbonds.com/):

for the three countries we study, the 10 year governent bond yields are -0.47% (Denmark), -0.595%
(Germany) and -0.32% (France).
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We find that supporting the penetration of wind energy (over the 15 years of

support) will cost the regulator from 57 to 172 billion e in France, from 232 to

397 billion e in Germany, and from 18 to 50 billion e in Denmark, depending on

the scenario considered and the level of penetration of wind energy. The results for

each scenario are shown in Figure 12. Scenario 5 always results in lower cost for the

regulator due to higher electricity prices and low penetration. Conversely, Scenario

2 results in higher costs for the regulator because of the price decreases coupled with

high penetration.

31

Electronic copy available at: https://ssrn.com/abstract=3769189



Figure 12: Cost for supporting future onshore (top panel) and offshore (bottom
panel) wind farm installations for 15 years; profitability (NPV =0) is guaranteed
for 90% of the new wind farms installed. The bars display the mean cost over the
5 models and 2 RCPs used ; the uncertainties displayed represent 2 standard devi-
ations. Scenario 1: No demand trends and low wind penetration; Scenario 2: No
demand trends and high wind penetration; Scenario 3: Medium demand trends and
low wind penetration; Scenario 4: Medium demand trends and high wind penetra-
tion; Scenario 5: High demand trends and low wind penetration; Scenario 6: High
demand trends and high wind penetration.
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5 Conclusions

In this study, we quantify the net present value of standardised wind power plants

and the associated uncertainty in France, Germany and Denmark under present

and future climate, and we evaluate the cost of the support schemes needed to

ensure the economic sustainability of the wind energy industry. This is achieved

by generating long synthetic series of wind power output and electricity prices from

long climate time series and, for the future climate projections, from scenarios of

electricity demand and wind power penetration from integrated assessment models.

The main contribution of our research is to combine, on the one hand, the information

on the wind resource from reanalysis and climate scenarios, and on the other hand,

information on energy prices from a realistic model of electricity consumption based

on climate data and economic scenarios. Building a realistic model for future wind

farm revenues is a complex task and some important features had to be left to further

research. First, the evolution of capital and operational costs of wind energy is not

taken into account. The model for electricity prices does not include socio-economic

factors other than electricity consumption and renewable energy production, such

as, for example, fuel costs. The economics of a wind farm is stylised, both in terms

of revenues (we assume that it is given by the market price plus a premium but,

for example, the role of aggregators is not taken into account) and in terms of wind

production (we use the same turbine model everywhere with only a correction factor

for offshore turbines). The price and consumption models are fitted over a relatively

short 3-year period, and, for example, the bias in the reanalysis data is assumed to

be constant in time.
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Despite these limitations, our work provides an original integrated methodology

to assess the uncertainties of wind farm net present value under current and future

climate. The methodology is fairly general and it can be easily applied to other

countries. The results of our analysis highlight the fundamental role that support

schemes play and are likely to be playing in the future in guaranteeing the economic

viability of wind power plants. Our study provides a realistic estimate of the future

costs of wind energy deployment under different climate and socio-economic scenar-

ios. We showed that the final cost to achieve energy transition by supporting wind

penetration is not negligible and that it can vary widely across countries.
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A Methods

Data

The data employed in this study have either an economic or a meteorological nature.

A summary of the variables and the datasources is provided in the Table 2. Economic

data consist in historical electricity consumption, production and price data at the

national level; meteorological data are surface temperature and wind speed which

are retrieved from reanalysis and regional climate models (RCM) at the local scale

(model gridpoints).

Source Variable Name Period Time resolution

ENTSOE
Electricity demand Dn Jan 1, 2015 to Dec 31, 2018 hourly
Wind production Wn Jan 1, 2015 to Dec 31, 2018 hourly
Day-ahead prices Pn Jan 1, 2015 to Dec 31, 2018 hourly

RTE Regional capacity factor Jan 1, 1979 to Dec 31, 2017 monthly

ERA-5 Surface temperature T2m Jan 1, 1979 to Dec 31, 2018 hourly
Surface wind speed F10m Jan 1, 1979 to Dec 31, 2018 hourly

ERA-20C Surface temperature T2m Jan 1, 1900 to Dec 31, 2010 6-hourly
Surface wind speed F10m Jan 1, 1900 to Dec 31, 2010 6-hourly

CORDEX
(see table 3)

Surface Temperature T2m

Jan 1, 1971 to Dec 31, 2005
and

Jan 1, 2006 to Dec 31, 2100
daily

Surface wind speed F10m

Jan 1, 1971 to Dec 31, 2005
and

Jan 1, 2006 to Dec 31, 2100
daily

Table 2: Datasets

We obtain the hourly demand (Dn), production (Wn) and day-ahead price (Pn)

for France, Germany and Denmark between January 1, 2015 and December 31,

2018 from the European Network of Transmission System Operators for Electricity

(ENTSOE) website.

RTE (Réseau de Transport d’Électricité) website provides the observed regional
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monthly wind capacity factors in the French regions between January 2015 and

December 2017.

As a proxy for past climate, from ERA-5 reanalysis ([11]) and ERA-20C reanalysis

([24]), we retrieve surface temperature (T2m) and surface wind speed (F10m) over the

domain covering France, Germany and Denmark (Figure 13).

The ERA-20C reanalysis spans the period from January 1, 1900 to December 31,

2010, at 6-hourly time resolution and 1.125◦ spatial resolution. The ERA-5 reanalysis

spans the period from January 1, 1979 to December 31, 2018, at hourly resolution and

0.25◦ spatial resolution. The spatial resolution of ERA-20C is very coarse (> 100km

in longitude and latitude). As a consequence, the results presented in the study give a

broad cartography of wind farms profitability and do not take into account small scale

phenomena such as small scale topography effect on wind (forests, hills, buildings...).

The ERA-5 data is much more resolved spatially (< 20km in longitude and latitude).

It also assimilates observations from satellites which where launched in the late 70s.

Moreover, this reanalysis is more recent than the ERA-20C reanalysis, so that it

is considered more reliable. Last, but not least, the time period covered by ERA-

5 reanalysis overlaps with the wind production, electricity demand and electricity

price observations used in this study. Unfortunately, the ERA-5 reanalysis spans a

relatively short time period which does not allow to carry out a deep investigation

of the variability within the entire 20th century. Therefore, we the ERA-5 dataset

to calibrate models and to correct the bias of the longer ERA-20C dataset, but then

use the ERA-20C data to construct the long time series of electricity price and wind

power production.
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Figure 13: Domains and onshore and offshore masks in ERA20C data.
Note: onshore (figures (a), (b), (c)) and offshore (figures (d), (e), (f)) masks are drawn for each
country to highlight the difference between onshore wind farms which have a lower capacity factor
and lower costs and offshore wind farms.

For future climate projections, we use simulations from the Coordinated Regional

Downscaling Experiment (CORDEX) program ([8]) which aims at developing an

improved framework for generating regional-scale climate projections. We retrieve

daily surface temperature and daily surface wind speed from historical RCP-4.5 and

RCP-8.5 simulations of several Regional Climate Models (RCMs) listed in the table

3 over the European domain (EUR44) with spatial resolution of 0.44◦. The historical

simulations span from Jan 1, 1971 until Dec 31 2005, and the RCP-4.5 and RCP-8.5

simulations span the period from Jan 1, 2006 until Dec 31, 2100. In this paper, we

limit the period of study to Dec 31, 2050.

Models

Demand Model (Model Dn)

The daily electricity demand is modelled as a function f of the mean daily surface
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Institution Model used
IPSL-INERIS IPSL-CM5A-MR

DMI ICHEC-EC-EARTH
CLM-Com MPI-M-MPI-ESM-LR
MPI-CSC MPI-M-MPI-ESM-LR
SMHI NOAA-GFDL-ESM2M

Table 3: List of the CORDEX model simulations used in the study

temperature Tt in France at time t, and of threshold temperatures Th with h for “hot”

and Tc with c for “cold”:

Dn
t = fw(Tt, Th, Tc)1t∈W + f o(Tt, Th, Tc)1t∈O + εt (3)

Here, Th and Tc are parameters, which are found by nonlinear least squares, W is

the set of weekdays, O is the set of weekend days/holidays, and εt is a residual.

The functional forms are specified as follows,

fwo(Tt, Th, Tc) = awo0 − awoh (Tt − Th)+ + awoc (Tc − Tt)+. (4)

National Production Model (Model Wn)

The daily wind energy production is computed from observed data from ENTSOE.

The daily wind speed at 10m is first extrapolated to 100m (hub height) using the

power law with α = 1/7 (Justus et al. (1976)):

F100 = F10 ×
(

100

10

)α
(5)

Next, the power curve of Figure 14 is applied at each gridpoint with a = 1.0. We
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Figure 14: Power curve of a Vestas-90-2MW Turbine with normalized power

compute the mean wind energy production W 0
n onshore and offshore as :

W 0
n,t =

∑N
i=1Wt,i

N
× Cinst

t (6)

with Wt,i the power computed at each gridpoint and Cinst
t the installed capacity

in the given country at time t. A bias still exists between computed and observed

production because the installed capacity is observed at the country scale. In order to

correct this bias, we apply, separately for onshore and offshore production, a linear

least square regression to obtain Wn. Adapting the a parameter to obtain more

realistic capacity factors (Fig 14) for each offshore and onshore location would lead

to comparable results. However, we prefer to correct the bias using the observed

national production data from ENTSOE.

Day-ahead Price Model (Model P)

Let us denote the hourly price as Pj,h and the daily price as Pj, and let ∆(Pj,h) =

Pj,h − Pj. We denote weekdays and weekend days/holidays with superscripts w and

o, respectively, as for the demand model, and the superscript wo means that the
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expression holds both for weekdays and for weekends.

We first decompose ∆(Pw
j,h) and ∆(P o

j,h) using Principal Component Analysis as

:

∆(Pw
j,h) = Ew

h +
N∑
p=1

Ew
p,hZ

w
p,j + ε (7)

∆(P o
j,h) = Eo

h +
N∑
p=1

Eo
p,hZ

o
p,j + ε (8)

Here Eh is the mean daily cycle around Pj, Ep,h is the pth mode of variation of the

daily cycle and Zp,j is the so called principal component that shows how the given

mode of variation evolves with time.

In our price model, we fix the number of principal components to N = 3 and

model the dynamics of Xj and Z1,j, . . . , ZN,j. Introduce the vectors

Xw
j =



Pw
j

Zw
1,j

...

Zw
N,j


and Xo

j =



P o
j

Zo
1,j

...

Zo
N,j


(9)

The dynamics of each vector is described by an autoregressive model involving the

demand Dj, the national wind production Wj, seasonal and autoregressive compo-

nents.

Xwo
j = awoDj + bwoD2

j +
L=3∑
i=1

lwoi Dj−i + cwoWj

+ αwosin sin(
2πj

365
) + αwocos cos(

2πj

365
) + βwoXwo

j−1 + εwoj .
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The parameters awo, bwo, lwoi , αwosin, αwocos, βwo are fitted by least square regression. We

assume that the residuals εj follow a hyperbolic distribution, whose parameters are

estimated by maximum likelihood.

The full model for the price process can then be written :

Pj,h = 1j∈W

(
Pw
j +

N∑
p=1

Ew
p,hZ

w
p,j

)
+ 1j∈O

(
P o
j +

N∑
p=1

Eo
p,hZ

o
p,j

)
, (10)

where, as before, W denotes the set of weekdays and O is the set of weekend

days/holidays.

Local wind speed and production Models (Model F & W)

The model F aims at generating an hourly wind speed time series from the 6-

hourly (resp. daily) wind speed from ERA-20C reanalysis (Cordex simulations) that

is statistically consistent with hourly wind speed from ERA-5 reanalysis.

Assume that the logarithm of the wind time series, Xt = log(Vt), is an Ornstein-

Uhlenbeck process with dynamics :

dXt = k(θ −Xt)dt+ σdWt (11)

The explicit form of the OU process is

Xs = X0e
−ks + θ(1− e−ks) + σ

∫ s

0

e−k(s−r)dWr (12)
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The stationary law of this process is

N

(
θ,
σ2

2k

)
, (13)

and the autocorrelation in the stationary regime is ρ(s, t) = e−k(t−s). The model

parameters σ, k and θ can thus be easily estimated from the mean, variance, and

autocorrelation of the log-wind time series.

We would like to characterise the law of Xs given Xt for 0 < s < t. It is clear that

the conditional law of Xs given Xt is Gaussian. We thus only need to characterise

the mean E[Xs|Xt] and the variance V ar[Xs|Xt].

Let

α =
Cov(Xs, Xt)

V ar[Xs|Xt]
= e−k(t−s)

1− e−2ks

1− e−2kt
(14)

Then, Xt is independent from Xs − αXt. Therefore,

E[Xs|Xt] = E[Xs − αXt + αXt|Xt] = αXt + E[Xs − αXt]

= αXt +X0e
−ks + θ(1− e−ks)− α(X0e

−kt + θ(1− e−kt))

and

V ar[Xs|Xt] = V ar[Xs − αXt + αXt|Xt] = V ar[Xs − αXt]

= σ21− 2e−2ks

2k

(
1− αe−k(t−s)

) (15)

With these known values of mean and variance, on can easily simulate the value of

Xs. This enables us to simulate the 10m wind speed at the hourly time resolution,
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which we denote in the following by F10m, by interpolating the 6-hour time series.

The model W aims at modelling the local wind energy production from F10m.

We first extrapolate wind speed to 100m height using power law [15]:

F100m = F10m ×
(

100

10m

)α
(16)

with α = 1
7
.

Finally, we apply the power curve of a Vestas-90 (2MW) wind turbine (Fig 14)

with normalized power to obtain the local wind capacity factor. In order to take into

account differences between onshore and offshore wind turbines, we define aonshore

and aoffshore to be equal to 1.28 and 0.82, respectively. The values of aonshore and

aoffshore have been chosen to obtain an average capacity factor onshore and offshore

of 25% and 35%, respectively.

Validation

Left panels in Figure 15 display the time series of monthly average prices between

January 1, 2015 and December 31, 2017, distinguishing between observed values from

ENTSOE (in black) and modelled ones (in blue). Values for France, Germany and

Denmark are shown in panel (a), (b) and (c) respectively. Right panels present the

distributions of hourly prices for the same period in France (b), Germany (d) and

Denmark (f).

Time series of monthly average prices show a satisfying correlation (0.74) in

France due to a well modelled seasonal cycle (Fig 15-(a)). Several peaks and lows
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Figure 15: Time series (left) of monthly average prices and estimated probability den-
sity function of hourly prices for the period between January 1st, 2015 and December
31st, 2017. France: (a, b); Germany: (c, d); Denmark: (e, f).

are well reproduced by the model (in December 2017 for instance). In Germany,

the correlation (0.56) is also satisfying, even if the seasonal cycle seems to be un-

derestimated (Fig 15-(c)). The peaks during 2016/2017 winter are not precisely

reproduced in France and Germany because they are related to a particular situa-

tion in Western Europe when nuclear plants in France had very low availability and

the hydro-reservoirs had low levels. Our model is unable to reproduce such peaks

because availability of nuclear and hydro is not taken into account. This kind of

special situations are rare and we leave them out of the scope of the paper.

For what concerns hourly prices in France and Germany (Fig 15-(b and d), re-

spectively), we find that the modelled prices have a slightly higher variance compared
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to the observed prices. This indicates that price volatility is slightly overestimated

in our model. This may be due to spikes in observed time series which induce small

errors in hyperbolic law parameters estimation (see the section Methods) and which

we choose not to model for simplicity.

In Denmark, the model seems to be less efficient as the correlation between ob-

served and modelled monthly average prices is lower (0.31, significant at 0.05 con-

fidence level) (Fig 15-(e)). Indeed, in Denmark, electricity prices are much more

volatile and more subject to spikes than in France and Germany which makes them

harder to model. Still, the distributions of observed and modelled hourly prices are

close to each other (Fig 15-(f)), with the same kind of volatility issue as in France

and Germany.

To validate the local production model, we use regional monthly capacity factors

from RTE website. On the basis of the results found for France, we can validate the

model for the other countries. Indeed, France displays a large panel of regions which

have their own particularity (e.g land and sea area ; flat terrain and mountainous

regions ; large scale pressure system induced winds in the Northwest and regional

winds induced by air channeling in the Southeast). In Denmark and Germany, the

terrain is mainly flat, and wind speed is mainly driven by large scale pressure system.

Thus, the wind speed in Denmark and northwestern Germany varies like northwest-

ern winds in France. The method for modelling production from reanalyzed wind

speed being the same in all countries, there is no reason for Danish and German

production to display larger deviation from monthly capacity factor than in France.

Therefore, the production in the northwest of France (i.e in the regions “Haut de
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France”, “Pays de la Loire” and “Grand-Est” in Figure 15 must look like the produc-

tion in Denmark and northwest of Germany. In the south of Germany, the production

is almost null, like in the french Alps region.

Figure 16: Time series of observed (black) and modelled (dashed) monthly capacity
factor in five French regions.

Figure 16 displays the time series of observed (black) and modelled (dashed)

monthly capacity factors in five French regions(Fig 16-(a)). In the regions “Haut

de France”, “Pays de la Loire” and “Grand Est” (Fig 16-(b, d, e) respectively), the

observed and modelled capacity factors are well correlated and no large biases are

found. In the region “Nouvelle Aquitaine” (Fig 16-(e)), all but one of the modelled

capacity factor time series are close and well correlated to the observed data, while

one time series displays a capacity factor close to zero. This is due to the presence of

Pyrénée mountains south of the displayed gridpoint. Indeed, in mountainous regions

reanalysis wind speeds are very low. In the region “PACA” (Fig 16-(f)), the modelled
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capacity factors are broadly distributed around the observed one. This is typical of

this French region which is surrounded by the Alps in the east, the Massif Central

(low mountains) in the west and the Mediterranean sea in the south. As a result, the

gridpoints located in mountainous regions display low capacity factors, one gridpoint

offshore displays a higher capacity factor and two other points adequately represent

the observed capacity factor.

Revenues, Costs, and NPV

The value of a wind production asset is determined by the cash flow throughout

its lifetime. We make the assumption that all production is sold on the day-ahead

market.7 The cash-in (or revenues) over a period of length T (for instance, a year)

are calculated as:

RT =
T∑
t=1

Wtft(Pt) (17)

where T is the length of the considered time period (in hours), Wt is the production

at time t in MWh, Pt is the day-ahead price at time t in e/MWh, and ft is the

function which takes into account the subsidy and payment to the aggregator. The

functions ft for FiT and FiP are described in the article.

The cash-out can be divided into two categories: the capital expenditures (CAPEX)

which essentially correspond to the initial investment, and the operational expendi-

tures (OPEX). Recent literature shows a decrease in investment costs for onshore
7In practice, the individual renewable energy producers are usually paid by the aggregator at

the day-ahead market prices reduced by a small constant aggregator fee.
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and offshore wind turbines in Europe, which range from 1.2Me/MW to 2.0Me/MW

for onshore wind turbines ([19], [30], [17]) and from 3.0Me/MW to 4.4Me/MW for

offshore turbines ([30, 17, 2]). In [30], the annual fixed OPEX are suggested to be

1.5% and 2.0% of the CAPEX for onshore and offshore wind turbines respectively.

The costs used in our study are summarised in Table 4.

Costs Onshore Offshore Source
Capex 1350 ke/MW 3000 ke/MW Turbine, grid connection

Fixed Opex 20 ke/MW/yr 60 ke/MW/yr O&M, balancing costs
[30]

Table 4: Costs of onshore and offshore wind farms

The value of a wind farm is assessed through its net present value (NPV), which

is calculated according to the following formula:

NPV =
T∑
t=1

(Cin
t − Cout

t )(1 + r)−t (18)

where T is the duration of the project (in years), Cin
t stands for the revenues of the

wind farm in year t, and Cout
t represents the costs sustained during the year t, where:

Cout
t = Capext +Opext. (19)

The CAPEX will only be invested at time t = 0. The parameter r is known as the

discount rate, it reflects the time value of money and the intrinsic risk of the project.

The value of r used in the study is 0.08. The net present value is very sensitive to

the discount rate, which is an important source of uncertainty in the quantification

of wind farm value.
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Sensitivity to Discount rate

The discount rate is a parameter which strongly impacts the NPV and as a a con-

sequence the profitability of an asset. Throughout the paper, we use a discount rate

of r = 0.08. In order to quantify the impact of the discount rate on our results we

compute mean NPV over the 81 virtual wind farm projects projects introduced in

Section 3 in 6 locations and for values of r from 0.0 to 0.1 with increment 0.01. The

results of this sensitivity analysis are displayed in Figure 17.

Figure 17: (a) Map of the mean NPV value for wind farms not supported by mecha-
nism, with r = 0.05 (same as Fig 7-(a)), the colored points correspond to the curves
in the sensitivity plots (b,c,d). (b) Mean NPV in case of no support mechanism as
a function of the discount rate for the 6 locations ploted in (a) ; (c) and (d) same as
(b) but for wind farms supported by FIT and FIP mechanisms respectively.

In the case of wind farms operating without a subsidy (Fig 17-(b)), wind farms at
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the 6 considered locations show a negative mean NPV for r > 0.06. With r = 0.05,

only wind farms located in France display a positive mean NPV. With a null discount

rate, these three wind farms show a NPV of about 1.5 Me/MW. In the case of wind

farms supported by FiT mechanism (Fig 17-(c)), whatever the discount rate value,

the mean NPV remains positive for onshore wind farms. From r = 0.0 to r = 0.1,

the loss in mean NPV ranges from 1.5 Me/MW (red curve) to 2.7 Me/MW (blue

curve). For the offshore location (in yellow), the sensitivity of NPV to the discount

rate is much higher because of the higher costs. The mean NPV becomes negative

for discount rate values in excess of 0.07. In the case of wind farms supported by

FiP mechanism (Fig 17-(d)), the NPV sensitivity to the discount rate is comparable

to that of FiT mechanism but the NPV values are lower.
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