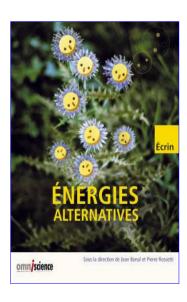
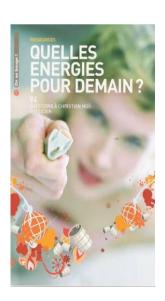
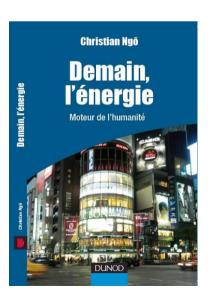
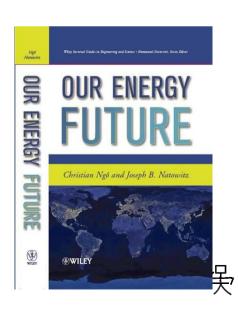


L'avenir énergétique est-il écrit?

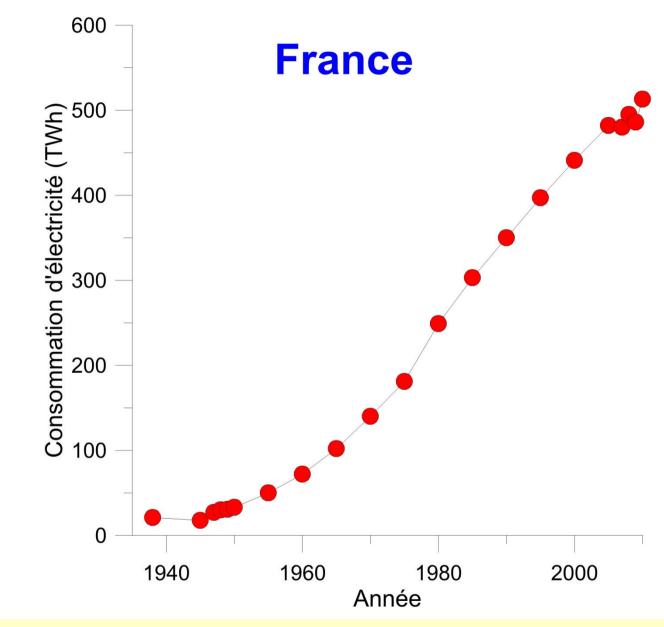





edmonium@gmail.com



www.edmonium.fr et edmonium.wordpress.com



L'électricité est un vecteur d'énergie noble. La croissance de la demande est supérieure à celle de l'énergie

Le défi énergétique

Les contraintes

- ☐ Le changement climatique
 - Emissions de gaz à effet de serre
 - L'homme émet 2 fois plus de CO₂ que ce que la nature peut absorber
 - > Echelle de temps courte
- Les combustibles fossiles sont en quantité finie
 - On va vers une crise énergétique inévitable
 - Echelle de temps plus longue

Le défi énergétique

- ☐ Emettre moins de CO₂
- Progressivement se passer des combustibles fossiles

Ne pas confondre énergie et CO_2

Suède \Rightarrow 15 MWh/hab/an d'électricité, 5,3 t CO_2 /hab/an Danemark \Rightarrow 6,9 MWh/hab/an d'électricité, 10,1 t CO_2 /hab/an

Ruptures scientifiques et technologiques

De quoi parle-t-on?

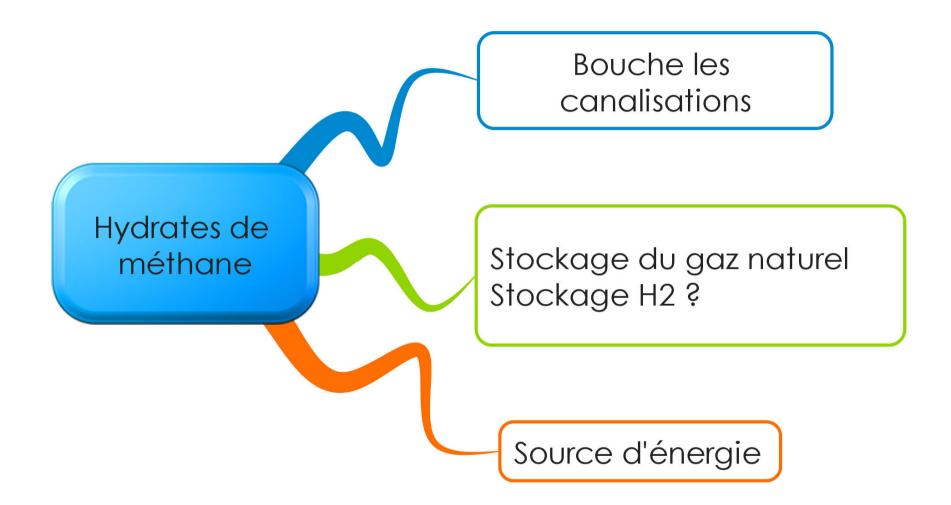
- ☐ Rupture scientifique
 - ☐ Grande rupture : la mécanique quantique
 - ☐ Petite rupture : le pompage optique
- ☐ Rupture technologique
 - ☐ Grande rupture: manipuler les atomes, le transistor...
 - ☐ Petite rupture : remplacer le platine par un métal de transition comme catalyseur dans les piles à combustible

Les petites ruptures sont indispensables pour faire progresser le domaine énergétique

Maintenant quelques exemples....

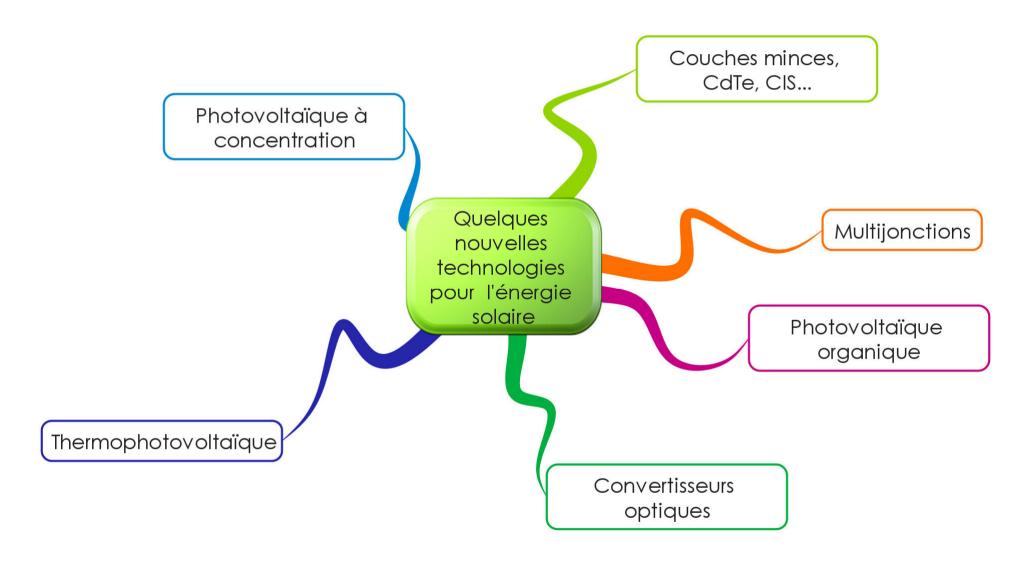
Combustibles fossiles non-conventionnels

Asphaltènes présents dans le pétrole extralourd Molécules très lourdes, contiennent des métaux (Ni, V), du soufre, de l'azote...

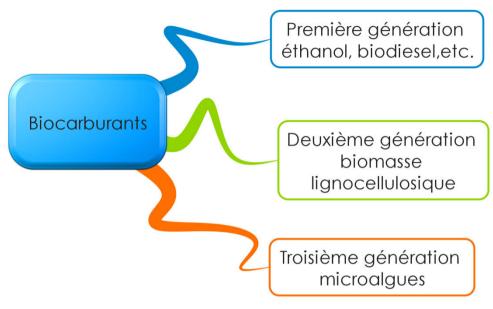

Améliorer les qualités du pétrole contenant des asphaltènes \Rightarrow hydrogénation (hydroprocessing, 70 bars, 350-450 °C) Le catalyseur (MoS₂, WS₂...), sur Al_2O_3 est très vite empoisonné par les métaux.

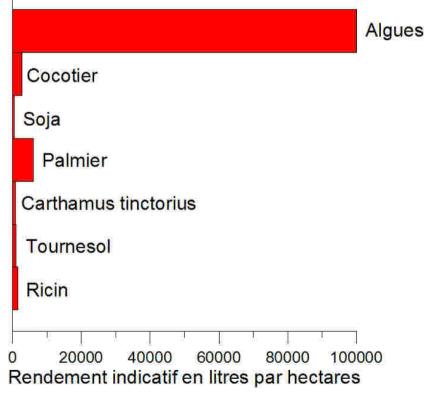
Nanotechnologies => self-supporting nanoparticules => élimine bien le soufre et permet de produire des produits pétroliers utilisables.

Morphologie des nanoparticles \Rightarrow permet d'optimiser les fonctions du catalyseur. Exemple avec un sulfure métallique on peut obtenir à partir de CO/H_2 des alcools à longue chaîne plutôt que des alcanes et des oléfines.

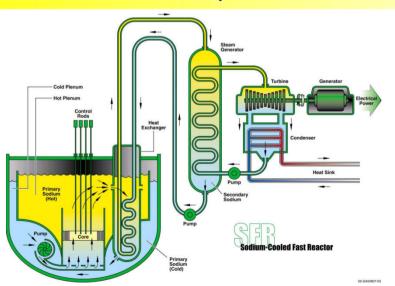


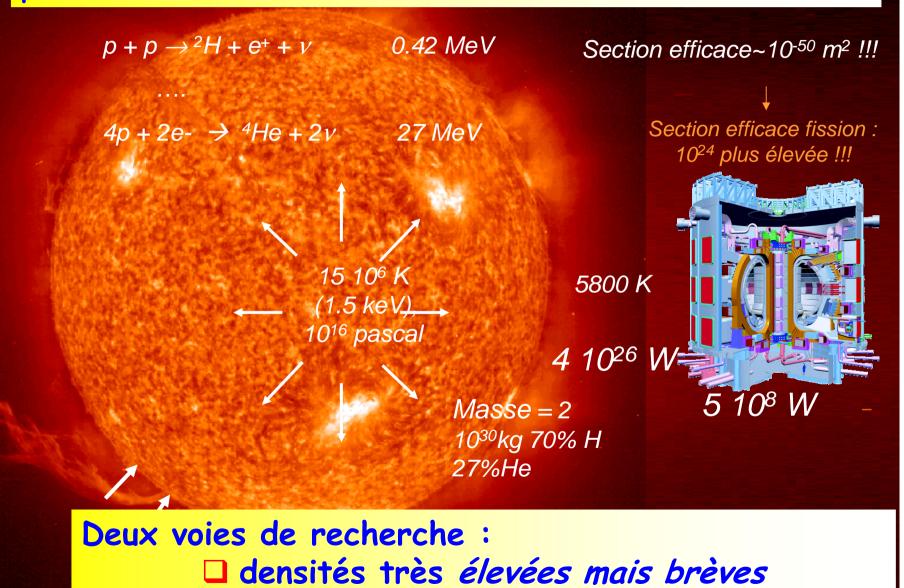
Hydrates de méthane


Energie solaire



Biocarburants


☐ Si on pouvait fabriquer du pétrole à partir des micro-algues ce serait une révolution


L'énergie nucléaire

- □ Réacteurs à neutrons lents (235U, 0,7% de U naturel)
 - 1 kWh d'électricité ⇒ 2 kWh de chaleur rejetés
 - Futur ⇒ réacteurs à neutrons les rapides (1 an d'uranium pour les REP actuels = plus de 100 ans de fonctionnement avec les rapides) ⇒ Réserves = dizaines de milliers d'années
 - ⇒ 1kWh électrique pour 1 kWh de chaleur

La fusion que l'on veut faire sur Terre n'est pas celle qui se produit dans le Soleil

densités très faibles mais durables

La fusion : énergie d'avenir... mais lointain

- (d+t) Au stade de la recherche. Réalisation industrielle ⇒ pas avant la fin du siècle, voire plus
- Réserves ⇒ quelques milliers d'années (+ avec eau de mer) (le tritium est fabriqué à partir du Lithium)
- Pour avoir une énergie inépuisable il faudra maîtriser la fusion d-d

Les projets (internationaux)

Jet 1kWh ⇒ 1 kWh

ITER 1kWh ⇒ 10 kWh

Pour faire de l'électricité il faut 1kWh ⇒ 40 kWh ⇒ (2 projets futurs DEMO et PROTO)

Transports (véhicules individues!)

- □ Véhicules hybrides, hybrides rechargeables, électriques□ Hydrogène et pile à combustible ?
 - ☐ Il faut : 15 kWh/100 km (≈150 Wh/km)
 - ☐ Moteur thermique (rendement ≈ 20%)
 - \Rightarrow 7,5 I/100 km
 - Moteur électrique (rendement ≈ 100% + 20% récupération)
 - \Rightarrow 12 kWh/100 km
 - ⇒ Batterie d'environ 25 kWh pour 200 km
 - ⇒ Batterie de l'ordre de 200 kg Li-Ion
 - ☐ Attention les accessoires diminuent fortement l'autonomie (chauffage, climatisation, éclairage, autoradio, etc.)

Transports

Quelles nouvelles batteries?

La batterie Li-Air pourrait permettre dans un premier temps d'atteindre 500 Wh/kg

Pour l'hydrogène et les PACs

- □ 2 révolutions à faire : la PAC et l'hydrogène
- \square Il faut à peu près 1kg de $H_2/100$ km ce qui représente environ 80 l à 700 bars pour 5 kg

Catalyseur des PACS?

La convergence habitat-transport

Maison à énergie positive

Les maisons à énergie positive n'ont d'intérêt que si le supplément d'énergie est stocké. L'idéal est dans la batterie d'une voiture hybride rechargeable. On pourrait utiliser le couple gaz naturel-électricité

Trop d'électricité : on charge la batterie

On ne roule pas aujourd'hui : on récupère l'électricité

Voiture hybride rechargeable