d Global Bioenergies

From carbohydrates to hydrocarbons

Disclaimer

This presentation contains certain forward-looking statements that have been based on current expectations about future acts, events and circumstances. These forward-looking statements are, however, subject to risks, uncertainties and assumptions that could cause those acts, events and circumstances to differ materially from the expectations described in such forward-looking statements.
These factors include, among other things, commercial, technical and other risks e.g. associated with estimation of the price of carbohydrate resources, oil and modeling costs, the meeting of development objectives and other investment considerations, as well as other matters not yet known to the Company or not currently considered material by the Company.
Global Bioenergies accepts no responsibility to update any person regarding any error or omission or change in the information in this presentation or any other information made available to a person or any obligation to furnish the person with further information.

Mission statement

Converting renewable resources into light olefins

 through direct fermentation
Producing olefins in a different way

Yesterday:
Fossil resources

Tomorrow.
Renewable resources

8
A small number of molecules constitute the heart of petrochemistry

Why is it interesting?

- Because these molecules are the key building blocks of the petrochemical industry
- Huge markets - wide product trees in plastics, elastomers and fuels - drop in

		Existing Market (b\$)	Potential Market (b\$)	Main applications
$>$	Ethylene	144		Polyethylene (60\%)
	Propylene	88		Polypropylene (65\%)
	Linear butenes	37-74		Co-monomers in various plastics
	Isobutene	29	>400	Tires, organic glass, PET, fuels
	Butadiene	14.6		Tires, nylon, coating polymers
	Isoprene	2	10	Tires, adhesives
				1: ICIS statistics $-29^{\text {th }}$ january 2 ${ }^{2}$: SRI reports

Market unbalance

Conventional Naphtha Cracking

Shale gas Cracking

- The growth of shale gas will lead to a shortage in propylene, C4 olefins and BTX stream and create the opportunity for alternative routes

A unique opportunity

- Approaches based on classical industrial biology techniques can not be applied to light olefins
- There wasn't any process development to bio-produce light olefins undertaken before the creation of Global Bioenergies
- This situation was paradoxical: The scientific and business community had left untouched one of the most promising opportunities
- A breakthrough was necessary to overcome the technical barrier and biologically produce light olefins
- This breakthrough innovation has been achieved by Global Bioenergies

Designing artificial metabolic pathway

No natural pathway to light olefins

Glucose

Isobutene

Creation of totally new metabolic pathways
-Enzymatic reactions never described
-Metabolic intermediates absent on earth

New « synthetic biology » approach

Strong IP Protection

- Sound Intellectual Property

Exclusive rights on 14 patent applications protecting different aspects of the technology

- Product is traceable (${ }^{14} \mathrm{C}$ content)
- Additional know-how barrier:
strains \& process book
(12) DEMANDE INTERVATIONALE PUBLIÉE E VERTU DU TRATTÉ DE COOPERATION EN MATIERE DE (19) Organisation Mondiale de la Propriété BREVETS (PCT)
(43) Date de la peblication internationale 7 janvier 2010 (07.01.2010)

Design of synthetic metabolism

Patents
WO2011032934

Con

Glucose
Acetyl-CoA
Acetone
Isobutene

GBE artificial pathway

Enzyme discovery

DiP-MVD decarboxylases

EC 4.1.1.33

Screening

3-Hydroxyisovalerate
(3-Hydroxy-3-methylbutyrate)

- HTS technology platform adapted to the identification of enzymatic activities involved in the synthesis of light olefins
- Similar results were obtained for the « HIV synthase » segment

Directed evolution strategy

Secondary hits

in vivo implementation - strain optimisation

Fermentation
\rightarrow GC Analysis

Process development

Global Bioenergies' process presents major advantages

Isobutene industrialization schedule

Jan 2013: - more than half of the development has been accomplished

- lab pilot in operation; industrial pilot in preparation

An experienced management team...

Liliane Bronstein
CFO
Since 1997, CFO in public fast-growing and innovation companies.
Led several IPOs and M\&A operations.

Marc Delcourt
CEO

Thomas Buhl
Head of Business Development
Former positions in technology transfer at CEA, business development in the white biotech sector and strategic development at

TecDAX company MorphoSys.

Lab pilot

- 42L fermenter + online detection installed in Evry
- Kg samples to be obtained in 2013

Industrial pilot

- Ton scale samples to be produced in 2014 and transferred to industrial prospects

Why did we choose to start with isobutene?

- Since 2008 :
- Ethylene prices are decreasing (due to the shift to shale gas and natural gas crackers)
- Prices of other olefins are increasing (due to reduced capacities of Naphtha crackers)
- Adjustment of prices for n-butene, propylene and butadiene ongoing or expected due to existing/developing methods to derive them from ethylene
- Isobutene can not be produced from ethylene $\boldsymbol{\rightarrow}$ no adjustment of price increase expected
- The market is expecting an alternative route for isobutene manufacturing

Isobutene: a large product tree

Estimated costs

Bio-Isobutene Cost Estimation

Feedstock is the principal cost-driver

Profitability - preliminary analysis

B
Market conditions would translate into an increasingly profitalle usage of the bioisobutene process for commodity chemicals applications.

Biofuels applications

- In the field of fuels, profitability will be more difficult to achieve in the short term as fuel price is low (close to crude oil price).
- The production of biofuels remains essential:
- The oil peak is close and worldwide demand is increasing
- There is no satisfactory alternative to liquid fuels.
- The market will adapt and the best technologies will prevail.
- The use of $2^{\text {nd }}$ generation biomass, less expensive, will enable the development of biofuels on a large scale.

Collaboration: Global Bioenergies and LanzaTech : development of a process for the bioproduction of isobutene from domestic and industrial waste

Modeling of a typical production site

Amortization: $\$ 10 \mathrm{~m} / \mathrm{year}$ (Investment: ~ \$100-200m amortized over 10-20 years)

Feedstock (700kT molasses for 350 kT sugar) \$140m/year

Revenues
(100kT High purity isobutene)
\$200m

Operational cost: $\$ 10 \mathrm{~m} / \mathrm{year}$

Operating profit \$40m (20\% margin)
"specialty chemistry margins for commodity chemicals markets"

A license-based business model

- Non-exclusive licenses, for 1 plant
- Expected revenues for Global Bioenergies:
- €10m upfront payment per 100kT production capacity at construction of the production site,
- $2-5 \%$ royalties ($€ 3-8 \mathrm{~m}$ per year per 100 kT).
- Licensing phase to start in 2014 (Two option licenses already signed)
- Existing market: 15MT isobutene, i.e. 150 plants
- Such a licensing-based business model
- is only possible because the existing market of isobutene is huge
- eliminates the risk linked to transiting from R\&D to Industrial exploitation

Targeted licensees

Biomass transformation industrialists
Sugar
Tereos, Cristal Union, Tate\&Lyle, SudZucker, ...
Starch
Roquette, ADM, Cargill, ...

Petrochemical industrialists
Fuel companies
Oil companies
Total, Exxon, Chevron, BP, Shell, ...
Fuel distributors
Independent distributors, retail store chains

Producers of down-stream products
Packaging producers, tire producers, cosmeticians, ...

Addressing some of the most important industrial sectors

Diverse feedstocks...

Sugar cane

Wheat

Rye, rice, barley,
Potatoes. ...

$\mathrm{CO}\left(+\mathrm{H}_{2}\right)$

Steel mills

Municipal waste

Biomass (all types)

Business model: other molecules

- Running in parallel several R\&D programs would represent a huge financial burden.
- Dedicated financing (grants or industrial partnerships) are sought for R\&D programs on molecules other than isobutene.
- First example: butadiene.

Butadiene: a second vast product tree

Opportunities for a number of licenses in industrial applications other than rubber

Advantages of a "drop-in" product

- Currently, several tens of production sites worldwide use isobutene, butadiene or propylene as a feedstock.
- Possibility to install bio-olefins plants close to these sites.
- Production, storage and distribution infrastructures already exist and do not need to be rebuilt.

At a glance

