Climate Change 2013: The Physical Science Basis Working Group I contribution to the IPCC Fifth Assessment Report

Carbon cycle and climate change, a tale of increasing emissions and uncertain sinks

Philippe Ciais

Govindasamy Bala (India), Laurent Bopp (France), Victor Brovkin (Germany/Russian Federation), Josep Canadell (Australia), Abha Chhabra (India), Ruth DeFries (USA), James Galloway (USA), Martin Heimann (Germany), Christopher Jones (UK), Corinne Le Quéré (UK), Ranga B. Myneni (USA), Shilong Piao (China), Peter Thornton (USA)

© Yann Arthus-Bertrand / Altitude

Never forget this : CO₂ remains in the atmosphere long after emissions

CO₂, CH₄ and N₂O increase in the Industrial Era

Atmospheric monitoring

Ice core records

IPCC AR5 Working Group I Climate Change 2013: The Physical Science Basis

Global Carbon Budget

Since 1750, human activities have emitted 555 \pm 85 PgC from fossil fuel burning and land use change

Fossil fuel CO_2 emissions were 9.5 PgC yr-1 in 2011, 54% above their 1990 level

On average over the past 50 years, a fraction of 44 ± 6 % of emissions remains in the atmosphere, increasing the Earth's greenhouse effect

Projecting future changes with Earth System Models

Climate Change 2013: The Physical Science Basis

INTERGOVERNMENTAL PANEL ON Climate change

WMO

Carbon vs physical parameters uncertainty

Figure 12.37: Uncertainty in global mean temperature from HadCM3 results exploring atmospheric physics and terrestrial carbon cycle parameter perturbations under the SRES A1B scenario (Booth et al., 2012; Murphy et al., 2004).

Simulated historical and future land and ocean carbon storage using CMIP5 models

Very large uncertainty on projected changes in land carbon storage

Compatible emissions for the RCP pathways

Uncertainties in modeled land and ocean carbon storage translate into uncertain compatible emissions

Positive carbon climate feedbacks confirmed in AR5

Climate change will affect carbon cycle processes in a way that will exacerbate the increase of CO_2 in the atmosphere (*high confidence*)

Future of the assessment : landuse emissions scenarios & evaluati

Land use emissions were not separated from net land flux in Earth System Models for CMIP5

All RCP pathways have low land use emissions

Response to atmospheric CO₂ only

INTERGOVERNMENT SOURCE: Ciais et al. 2013 IPCC ARS

Response to climate change only

IPCC AR5 Working Group I Climate Change 2013: The Physical Science Basis INTERGOVERNMENT SOURCE: Ciais et al. 2013 IPCC AR5

Green : RCP8.5 scenario over Amazon Blue & Orange : Brazilian projections (LUCCME in blue and SIMAMAZONIA)

Soares Filho et al., 2006

Research needs:

Understand differences between global and regional land use scenarios Reconcile food security scenarios (MA, FAO) with climate scenarios (IPCC)

Future of the assessment : land-

use emissions scenarios &

Future of the assessment : Nutrients limitations of terrestrial C storage

Only 1-2 Earth System Models included N-limitations in CMIP5 and found a smaller sink response to CO₂ and climate **Future** 400 biomass C [Gt] biomass C storage 200 From an offline model with N & Δ **P** limitations 1900 2000 2100 2200 2300 2400 2500 400 **Future** soil C [Gt] soil C 200 storage ⊲ 0 1900 2200 2500 2000 2100 2300 2400 year Goll et al. 2012 ĊN CP CNP

IPCC AR5 Working Group I Climate Change 2013: The Physical Science Basis

Future of the assessment : CH₄ and N₂O climate feedbacks

Feedbacks that were not included in CMIP5 models: Climate sensitivity of wetland CH_4 emissions Stability of ocean CH_4 hydrate pools Response of soil N₂O emission processes to climate and elevated CO_2 Response of ocean N₂O emissions to changes in O₂ & circulation

Future of the assessment : 'cold' carbon processes, permafrost C

1670 Pg C In permafrost

Mc Dougall et al. 2013

Here an Earth System Model with permafrost carbon processes was driven forward by RCP emissions

Result: higher projected warming (0.13 to 1.7° C) and CO₂ release (70 to 500 PgC)

Key « missing » processes : soil ice, soil C vertical distribution, soil C pools decomposition rates [C:N], fire & thermokarst

IPCC AR5 Working Group I Climate Change 2013: The Physical Science Basis

Conclusions, future IPCC challenges

Few good guys

CO₂ fertilization of NPP (-) - Level of understanding in parenthesis CO₂ driven ocean uptake (+) Longer northern growing seasons (+) Land management (-)

Many potentially bad guys

Intense land use scenarios (- -) Permafrost C emissions (- -) Wetland emissions increase (- -) Fire emissions increase (- -) Emerging Nutrient limitations (- -)

Research should focus on reducing uncertainties using measurements and on quantifying the net effect of good guys and bad guys for a range different scenarios

IPCC AR5 Working Group I Climate Change 2013: The Physical Science Basis

Thank you for your attention

