

CO₂ to jet: Context and Concepts Bart Vandegehuchte

TUCK foundation event 20-03-2023

The e-fuel scene

'Electrofuels, also known as e-fuels or synthetic fuels, are a type of drop-in replacement fuel. They are manufactured using captured carbon dioxide or carbon monoxide, together with hydrogen obtained from sustainable electricity sources such as wind and solar power'.

e-Fuels for climate mitigation

Potential to avoid the use of fossil carbon

Only makes sense if produced from renewable energy

Best applied to sectors difficult to abate, e.g. long-haul transport

e-Fuels in EU guidelines

Fit for 55 Package – Policy proposal to achieve a 55 % reduction in GHG emissions by 2030 compared to 1990

Renewable Fuels of Non-Biological Origin (**RFNBOs**) incentivized \rightarrow renewable electricity, green hydrogen, e-fuels

13 % emissions reduction for transport sector, emphasis on marine and aviation transport

year	SAF	e-jet
2025	2	
2030	5	0.7
2035	20	5
2040	32	8
2045	38	11
2050	63	28

RFNBO acknowledged if GHG savings > 70 %

FF55 Package

e-Fuels for aviation: e-jet

Need to approach **energy density and cold-flow properties** of A-1 Jet fuels

7 SAFs approved for **up to 50 % blends** more than a dozen pathways pursuing certification

ASTM ⁽¹⁾ approved pathways		Blend limit
FT	Fischer-Tropsh Paraffinic Kerosene (FT-SPK)	50%
HEFA	Hydroprocessed Esters and Fatty Acids (HEFA-SPK)	50%
SIP	Hydroprocessed Fermented Synthesized Isoparaffins	10%
FT-A	FT SPK with Aromatics	50%
ATJ	Isobutanol and Ethanol to Jet Synthesized Paraffinic Kerosene	50%
СНЈ	Catalytic hydrotherolysis jetfuel	50%
ннс	Biological derived hydrocarbons from algae	10%
⁽¹⁾ ASTM D	7566	

e-Jet as 100 % drop-in fuel : a challenge

conventional jet fuel composition:

Jet A and jet A-1 contain 8-25 vol% aromatics

Need for CO_2 conversion technologies to:

n/iso-paraffins in C_7 - C_{18} range

multi-substituted aromatics

Blended in correct amounts

jet fuel property	<i>n</i> -parrafin	<i>iso</i> -paraffin	naphthene	aromatic
energy content				
gravimetric	+	+	0	-
volumetric	-	-	0	+
combustion quality	+	+	+	-
low-temperature fluidity		0/+	+	0/-

Chevron Aviation Fuels 2007

CO₂ to e-jet : a multitude of pathways

CO₂ to e-jet : a multitude of pathways

CO₂ to e-jet: Focus on Fischer-Tropsch route

e-Fuel plants of today and tomorrow

From e-fuel-alliance.eu website

10

Template Slides-OneTech

e-fuels from rWGS+FTS			
	100 kt/y 2025		
🔶 norsk e-fuel	12.5 Ml/y 2024		
Arcadia eFuels	100 Ml/y 2025		
O Nordic Electrofuel	4.4 MI/y 2025		
Contraction (Contraction)	0.5 Ml/y 2025		

Main challenge: reverse water gas shift

$$CO_2 + H_2 \leftrightarrow CO + H_2O, \Delta H_{298K} = + 41 \text{ kJ.mol}^{-1}$$

1. Thermodynamically limited

2. Methane formation favored

STRATEGY 1 – High temperature operation (> 700 °C), push CO₂ conversion \rightarrow current/future (demo)plants **STRATEGY 2** – Low temperature operation (< 500 °C), block pathway to CH₄ \rightarrow academic research

Single-step production : a feasible alternative?

Zeolite

Smaller paraffins formed

 $X_{CO2} \sim 35-40 \%$ $S_{C5+} \sim 60-65 \%$

+

+

Techno-economic & Life cycle analysis

