La part des renouvelables dans le mix énergétique en 2050

Tuck Foundation Webinar

11 June 2024

Fereidoon P. Sioshansi, Ph.D. Menlo Energy Economics

San Francisco CA www.menloenergy.com fpsioshansi@icloud.com

Pleasure to join virtually

- Thanks to Jean Pierre Favennec for the invite
- Apologies for speaking in English

Zero Net Emissions by 2050?

- Is it possible?
 - EU?
 - USA?
 - OECD?
 - China?
 - Globally?
- More important
 - Should we try?
- The implications?
 - For renewables, fossil fuels, storage, electricity grids, etc.

Is it possible?

- "If there is a will, there is a way"
 - Humans have achieved many incredible feats in the past
 - D-Day amphibious landing on Normandy
 - Manhattan project Oppenheimer movie
 - JFK's moonshot
- Only if the decision could to be made by a single, informed global decisionmaker
 - Not easy; nor impossible
 - IEA's Net Zero Scenario 2050 shows how

EU, US, China, globally?

- Developed economies well-positioned
 - UK: 38% reduction in emissions since 1980
 - US: 35-43% reduction by 2030 due to IRA
- China's emissions already peaked?
- Developed economies?
 - Other pressing priorities
- Globally?
 - Not so sure
 - Future population growth in "global south"

Can be accelerated

California has a plan

Source: Long-run resource adequacy under deep de-carbonization pathways for California, Energy & Environmental Economics, June 2019

50 by 50 Bloomberg: Renewables 50% of global capacity by 2050

Source: Bloomberg NEF

Should we try?

- Costs vs. benefits
 - Costs: Non-trivial; paid by current generation
 - Benefits: Non-trivial; enjoyed by future generations
- Balance?
 - Significant uncertainties
 - Cost of capital/discount rate

2023 hottest on record

Source: Getty Images

BNEF: Few anecdotes

- Renewable capacity tripled by 2030
- EVs 100% of sales by 2034
- Huge increase in CCS
- Cost: \$5.4 trillion/yr thru 2030
- \$1.8 trillion spent on low-carbon technologies in 2023
- Solar/wind 80% of global generation capacity additions
- Reversal of roles
 - Clean energy: \$2.7 trillion/yr
 - Fossil fuels: \$0.9 trillion/yr

Ascent of Renewables

- Cumulative global installed solar capacity > 1.4 TW
 - 10 times larger in 10 yrs; doubling every 3 years
- Global solar capacity > nuclear in 2017
- > wind in 2022 > hydro in 2023
- At current growth rates
 - Solar > gas in 2024 > coal in 2025
 - 9 TW in 2031
 - More solar generation capacity than all combined

Implications?

- Significant investment in
- Renewable generation
- Electricity grids
- Storage

Relatively easy

Not easy

Not easy

Sun shines everywhere

https://img.energytech.com/files/base/ebm/energytech/image/2023/01/Silicon_Ranch.63b732 86ecd8b.png?auto=format,compress&w=1050&h=590&fit=clip

Negative net load

Unlike oil, electricity cannot be easily stored

Will he get re-elected in Nov?

2020 election has left US divided

Conclusions?

My observations

- Traditional energy paradigm is unsustainable
- Time is of the essence for energy transition

If "agreed"

- Electrify (virtually) everything
- Supplied (mostly) from renewables
- Handle "residual" issues as best as possible

Implications?

- Electricity (gradually) emerges as main energy carrier
- Renewables major supplier of electricity
- New ways must be found to manage variability
- Storage, hydrogen, etc.
- CCS/direct carbon capture most likely required for net zero carbon

Thank you

Happy to answer questions